

Functionally Tailored Multicomponent Composite Structures via Additive Manufacturing

John A. ("Andy") Newman NASA Langley Research Center

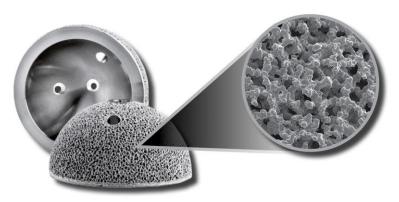
NASA Aeronautics Research Mission Directorate (ARMD)
2015 Seedling Phase II Technical Seminar
November 17 & 19, 2015

Outline

- Introduction
- The innovation
- Impact
- Technical approach
- Material Processing
- Mechanical Testing
- Results of the Seedling effort to date
- Distribution/Dissemination
- Next steps

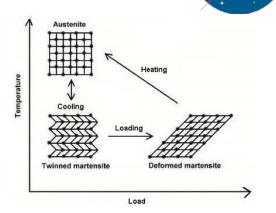
Team

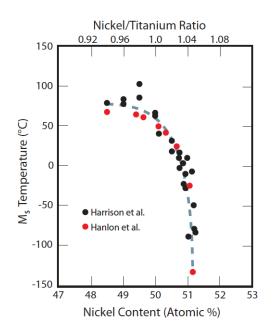
- Craig A. Brice
 - Formerly NASA Langley; currently Lockheed Martin
- John A. ("Andy") Newman, Wesley A. Tayon, Joel Alexa, Jim Baughman, Pete Messick, Ravi Shenoy (retired), H.D. Claytor
 - NASA Langley (CS and contractors)
- Kenneth G. Cooper, Quincy A. Bean, Phillip Steele
 - NASA Marshall


Introduction

Metallic foam structures

- Open cell foams can be fabricated through established foaming processes for some alloys (e.g., Al, Cu, Zn)
- Closed cell foams can be produced via powder metallurgy (e.g., Ti, Ni, Fe)
- Additive manufacturing opens new possibilities for novel foam structures for a wide range of alloys
- This project will use additive manufacturing to create open cell structures than can be infiltrated with other alloys to create bi-metallic composites

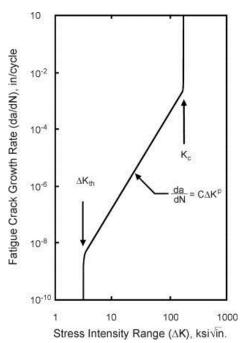



www.arcam.com

Introduction

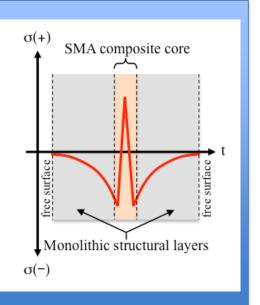
- mtroduction
- The shape memory effect is well documented and being studied for numerous applications
- Change in crystal structure from high temperature austenite phase to a low temperature martensite phase
- Plastic strain accommodated by twinning; recovered by reverse transformation (heat or strain)
- The objective is to exploit this phenomenon to produce beneficial residual stresses that inhibit crack growth

www.keytometals.com



www.asminternational.org

The Innovation


- Strain fields within a structure can have a significant impact on properties and performance
- Cracks tend to nucleate from a free surface and grow when stress levels exceed the threshold stress intensity factor (ΔK_{th})
- Below the threshold level cracks do not grow

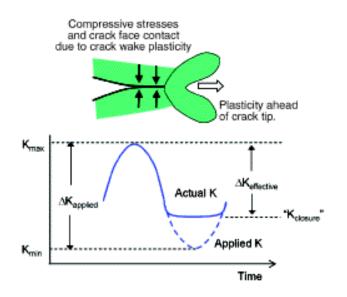
Handbook of Damage Tolerant Design

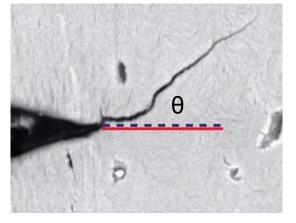
<u>Objective:</u>

Create a unique bi-metallic composite structure with a carefully designed residual stress field that can be tailored to limit or eliminate the ability of a surface crack to propagate through the structure.

Affecting Crack Driving Force

Crack closure

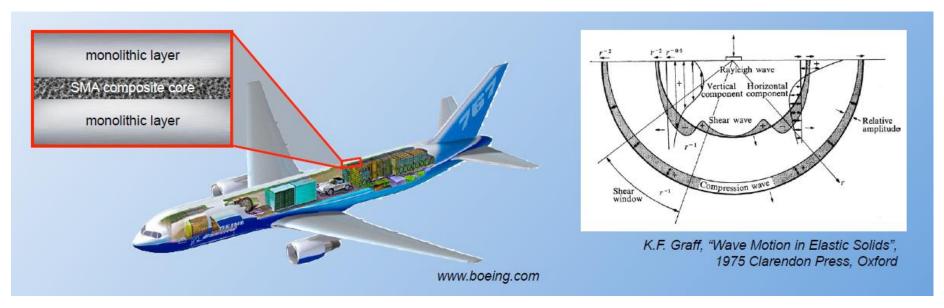

 Compressive residual stress may promote premature clamping of crack faces reducing the effectiveness of cyclic loading


Crack deflection

 Residual stresses or diagonal reinforcements may cause crack deflection; deviation away from the plane of highest principal normal stress with decrease the crack-tip driving force

Interfaces between dissimilar materials

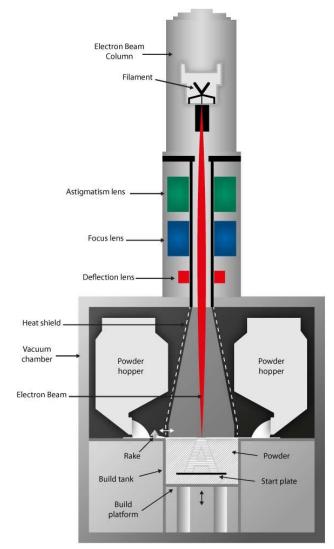
Cracks may not readily grow between
 Ti-6Al-4V matrix and NiTi



Impact

This concept could greatly impact the fatigue performance of aerospace components through crack closure and/or deflection

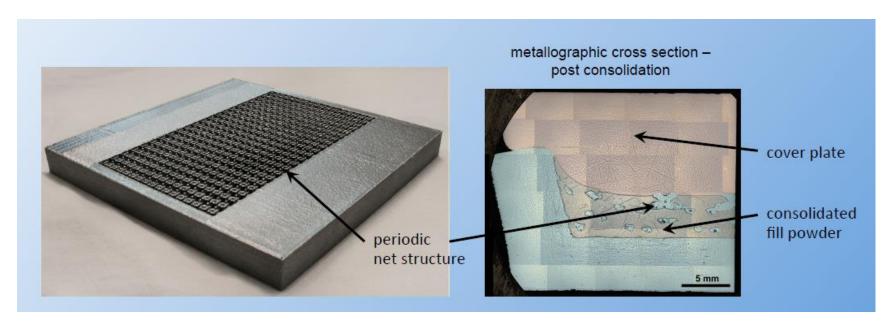
- Improved structural efficiency in damage tolerance limited applications
 Potential use in anti-ballistic impact applications through shock wave disruption/attenuation
 - Micrometeoroid and Orbital Debris (MMOD) shielding
 - Armored tactical vehicles



Technical Approach – Processing

The Arcam electron beam powder bed additive manufacturing process was used

- Fabrication was done at U. of Texas at El Paso (phase I) and Marshal Space Flight Center (phase II)
- Thin layer of powder is spread over a substrate and fused together using electron beam
- Substrate platform increments downward and the process is repeated for another thin powder layer
- This process is repeated until the desired 3-D structure is created

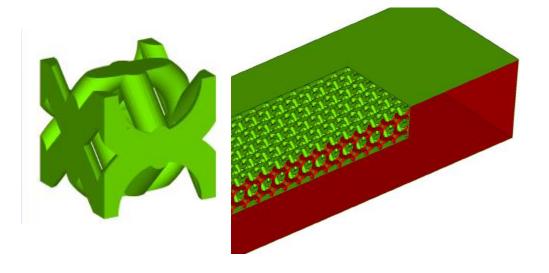

www.arcam.com

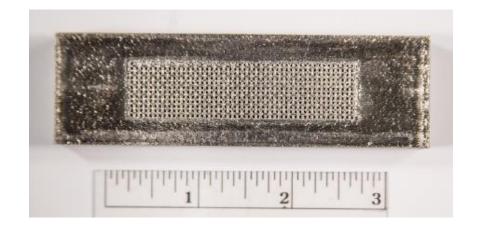
Technical Approach – Processing

Utilize additive manufacturing to create open cell net structures to be infiltrated with a secondary alloy powder and hot consolidated into a fully-dense, multi-alloy material

 Proof of concept with Ti-6Al-4V AM-fabricated material infiltrated with commercially-pure titanium and vacuum hot pressed to full density

Material Design



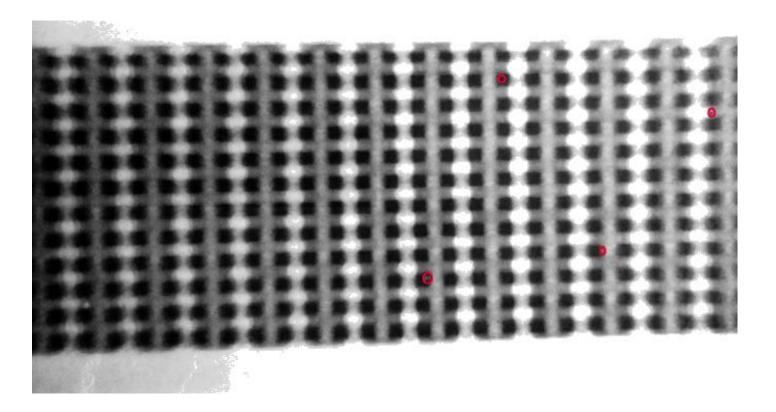

Periodic cell structure

- Diagonal crossing pattern
- Approximately 1mm spacing between cell centers

Arcam samples

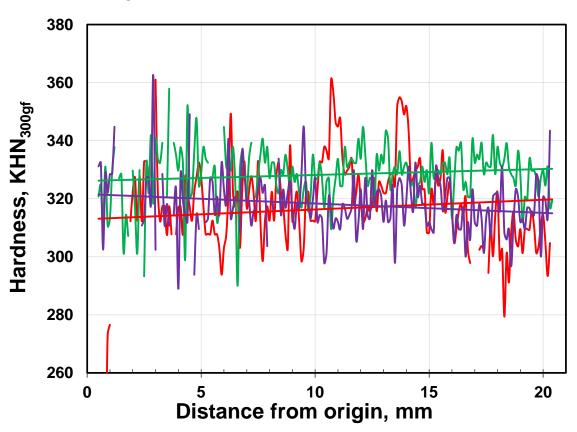
- Ti-6Al-4V
- Nominal dimensions
 - 100mm by 31mm
 - 7mm border on sides
 - 19mm border on ends

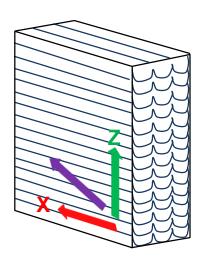
Material Processing


- Ni-Ti powder vibrated into open cell samples
 - 50.7 at% Ti; 49.3 at% Ni; -140 mesh (<105 μm)
 - $-A_s = 68^{\circ}C; A_f = 109^{\circ}C; M_s = 78^{\circ}C; M_f = 38^{\circ}C$
- Mechanical die is used; material consolidation by hot pressing
 - 940°C for 4 hours at 1,000 psi
- Perform shape set heat treatment
 - 500°C for 15 minutes
- Cold rolling
 - 5% reduction in thickness
- Memory activation
 - 115°C for 15 minutes

Material Processing

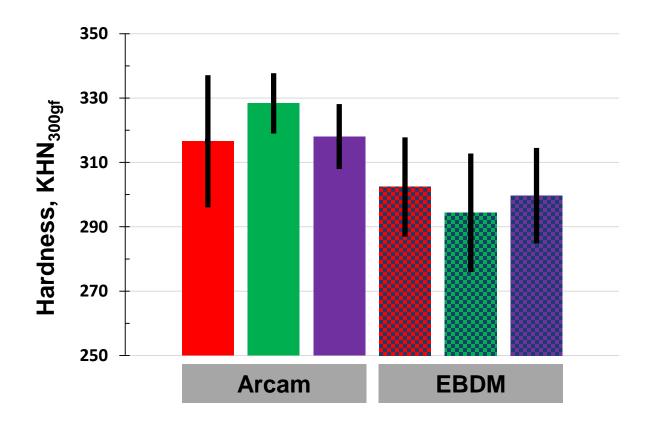
- Radiography of vacuum hot pressed sample performed
 - No major voids found indicating complete fill of open cells
 - Some incidental porosity found (red circles)



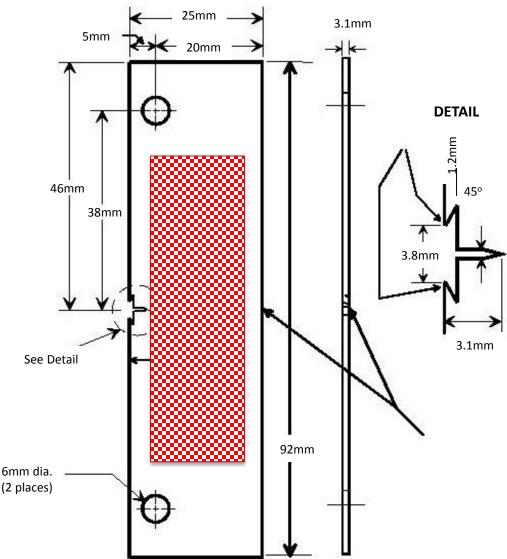

Hardness Test Results

Testing performed on X-Z plane with Knoop indenter aligned to:

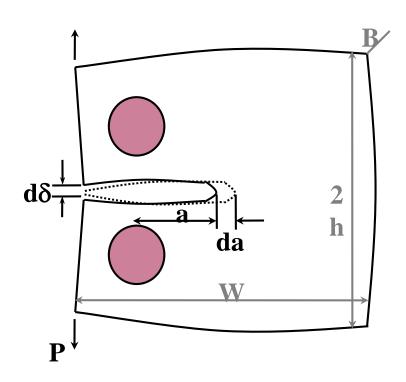
- Plane of deposition (X)
- Normal to deposition plane (Z)
- 45 degrees in-between



Hardness Test Results

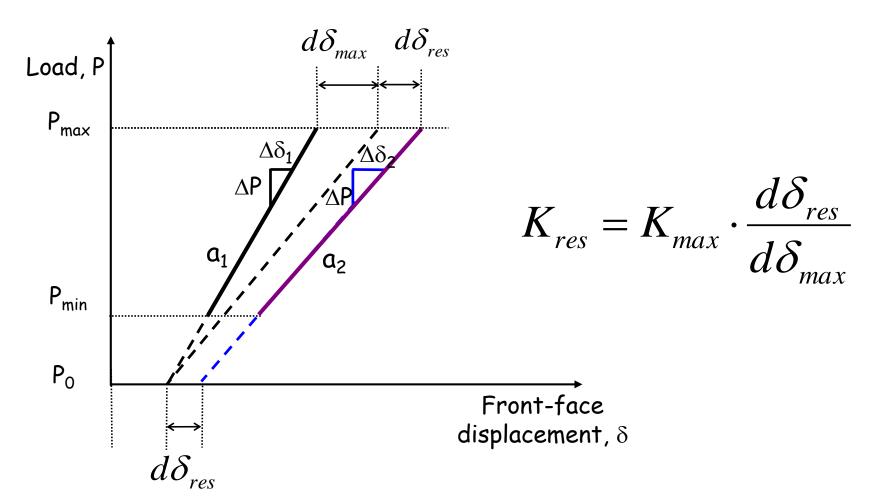

Hardness of Arcam product is superior to other e-beam AM deposition method

Fatigue Crack Growth Specimen



- Eccentrically-loaded single-edge notch tension (ESE(T)) specimen
 - Pin loaded
 - Tests run in K-control
 - Crack mouth opening used to monitor crack length during test
 - Automated system continuously adjusts load to achieve programmed crack-tip stress intensity factors (ΔK)
 - Residual stress component of crack-tip stress intensity monitored by tracking zeroload offset of crack mouth opening (similar to cutcompliance test)

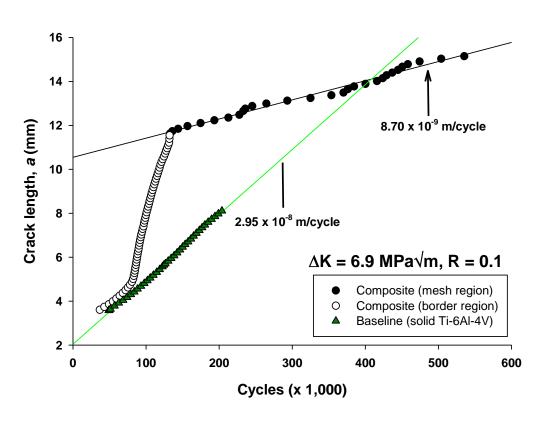
Residual Stress Determination


- $K_{res} = \frac{E}{Z(a)} \cdot \frac{d\delta}{da}$
- Z(a) = influence function $\frac{4 \cdot (2W + a) \cdot F_2\left(\frac{a}{W}, \frac{h}{W}\right)}{(W a)^{\frac{3}{2}}}$
- Measure changes in notch displacement for incremental changes in crack length
 ⇒ K_{res} can be calculated
- Z(a) depends on size, geometry, strain measurement location, but not on the residual stress distribution

References

- H.-J. Schindler, W. Cheng, and I. Finnie, *Exp. Mech.* 37, 272–277, 1997.
- M. B. Prime, Fatigue & Fracture of Engineering Materials & Structures, **22**, 195-204, 1999.
- X. R. Wu and A. J. Carlsson, 1991.
- Diana Lados, 2006
- M. B. Prime and M. R. Hill, 2002

Residual Stress Determination


Reference: K. Donald, FTA.

18

Fatigue Crack Growth Testing

- Constant-∆K test
 - Slope of plotted data is crack growth rate (da/dN)

- Baseline test (solid Arcam product)
 - Steady da/dN
 - Little residual stress detected
- Composite test
 - Initially same rate as baseline
 - da/dN increased with tensile residual stress
 - da/dN abruptly decreased as crack grew into NiTi mesh region
 - Highly-unsteady, but compressive residual stress

Results to Date/Summary

- Material produced
 - Well-consolidated, nearly-fully-dense metallic composite
- Material characterized
 - Small pores, but otherwise well consolidated
 - No delaminations or imperfections observed at Ti-6Al-4V/NiTi interfaces
- Material tested
 - Bi-metallic composite in a state of prestress (residual stress); slight material warping observed
 - Fatigue crack growth testing revealed that suppression of crack growth rates occurred in the NiTi-rich region of the specimen corresponding to compressive residual stresses

Dissemination

- C.A. Brice, W. Tayon, J.A. Newman, R.N. Shenoy, S. Sankaran, S. Gardner, and Z. Loftus, "Characterization of Titanium Alloys Fabricated by Additive Manufacturing," presented at the 13th World Conference on Titanium, August 19, 2015, San Diego, California.
- C.A. Brice, "Bi-metallic Composite Structures with Designed Internal Residual Stress Field," NASA/TM-2014-218174.
- J.A. Newman, C.A. Brice, W.A. Tayon, and K. Cooper, "Functionally Tailored Multi-component Composite Structures via Additive Manufacturing," in progress; to be submitted as a NASA/TM.

Next Steps

- Characterization of residual strain field
 - Mechanical test results suggests variation in residual stress occurs on small length scale
 - Digital image correlation should be used to characterize the residual strain field on the specimen surface
 - Strain field determined by tracking relative displacements of speckles on specimen surface during mechanical testing
 - Could characterize shape-memory transformation in NiTi and crack closure
 - Able to use image correlation on a wide range of length scales (from mm to nm)
- Fatigue testing could provide additional information
 - Cyclic loading but with no crack
 - Cracks would naturally initiate, likely at regions of tensile residual stress
 - Equilibrium requires there to be regions of tensile residual stress to offset regions of compressive residual stress